HERRAMIENTAS Y MAQUINAS
La máquina herramienta es un tipo de máquina que se utiliza para dar forma a piezas sólidas, principalmente metales. Su característica principal es su falta de movilidad, ya que suelen ser máquinas estacionarias. El moldeado de la pieza se realiza por la eliminación de una parte del material, que se puede realizar por arranque de viruta, por estampado, corte o electro erosión.
El término máquina herramienta se suele reservar para herramientas que utilizan una fuente de energía distinta del movimiento humano, pero también pueden ser movidas por personas si se instalan adecuadamente o cuando no hay otra fuente de energía. Muchos historiadores de la tecnología consideran que las auténticas máquinas herramienta nacieron cuando se eliminó la actuación directa del hombre en el proceso de dar forma o troquelar los distintos tipos de herramientas. Por ejemplo, se considera que el primer torno que se puede considerar máquina herramienta fue el inventado alrededor de 1751 por Jacques de VaucansIon, puesto que fue el primero que incorporó el instrumento de corte en una cabeza ajustable mecánicamente, quitándolo de las manos del operario.
Las máquinas herramienta pueden utilizar una gran variedad de fuentes de energía. La energía humana y la animal son opciones posibles, como lo es la energía obtenida a través del uso de ruedas hidráulicas. Sin embargo, el desarrollo real de las máquinas herramienta comenzó tras la invención de la máquina de vapor, que llevó a la Revolución Industrial. Hoy en día, la mayor parte de ellas funcionan con energía eléctrica.
Las máquinas-herramienta pueden operarse manualmente o mediante control automático. Las primeras máquinas utilizaban volantes para estabilizar su movimiento y poseían sistemas complejos de engranajes y palancas para controlar la máquina y las piezas en que trabajaba. Poco después de la Segunda Guerra Mundial se desarrollaron los sistemas de control numérico. Las máquinas de control numérico utilizaban una serie de números perforados en una cinta de papel o tarjetas perforadas para controlar su movimiento. En los años 1960 se añadieron computadoras para aumentar la flexibilidad del proceso. Tales máquinas se comenzaron a llamar máquinas CNC, o máquinas de Control Numérico por Computadora. Las máquinas de control numérico y CNC pueden repetir secuencias una y otra vez con precisión, y pueden producir piezas mucho más complejas que las que pueda hacer el operario más experimentado.
EVOLUCIÓN HASTA EL SIGLO XVII
Desde la prehistoria, la evolución tecnológica de las máquinas-herramienta se ha basado en el binomio herramienta-máquina. Durante siglos, la herramienta fue la prolongación de la mano del hombre hasta la aparición de las primeras máquinas rudimentarias que ayudaron en su utilización. Aunque en la antigüedad no existieron máquinas-herramienta propiamente dichas; sin embargo, aparecieron dos esbozos de máquinas para realizar operaciones de torneado y taladrado.
En ambos casos, utilizando una de las manos, era necesario crear un movimiento de rotación de la pieza en el torneado y de la herramienta en el taladrado. Debido a esta necesidad nació el llamado “arco de violín”, instrumento de accionamiento giratorio alternativo compuesto de un arco y una cuerda, utilizado desde hace miles de años hasta la actualidad en que todavía se utiliza de forma residual en algunos países. Hacia 1250 nació el torno de pedal y pértiga flexible accionado con el pie, representando un gran avance sobre al accionado con arco de violín puesto que permitía tener las manos libres para el manejo de la herramienta de torneado.
Hasta finales del siglo XV no se producen nuevos avances. Leonardo da Vinci, en su “Códice a Atlántico”, realizó un boceto de varios tornos que no pudieron construirse por falta de medios, pero que sirvieron de orientación para próximos desarrollos. Se trataba de un torno de roscar de giro alternativo, otro de giro continuo a pedal y un tercero para roscado con husillo patrón y ruedas intercambiables.
Para principios del siglo XVI Leonardo da Vinci había diseñado las tres principales máquinas para el acuñado de monedas: la laminadora, la recortadora y la prensa de balancín. Según parece, estos diseños sirvieron a Cellini para construir una rudimentaria prensa de balancín en 1530, pero la puesta en práctica generalizada se atribuye a Nicolás Briot en 1626.
El descubrimiento de la combinación del pedal con un vástago y una biela permitió su aplicación en primera instancia a las ruedas de afilar, y poco después a los tornos. Así, después de tantos siglos, nació el torno de giro continuo llamado de pedal y rueda, lo que implicaba el uso de biela-manivela que debía de ser combinado con un volante de inercia para superar los puntos muertos, “alto y bajo”
A finales de la edad media se utilizan la máquina afiladora que emplea la piedra giratoria abrasiva, el taladro de arco, el berbiquí y el torno de giro continuo, que trabajan con deficientes herramientas de acero al carbono. Se usan martillos de forja y rudimentarias barren adoras de cañones, accionadas por ruedas hidráulicas y transmisiones de engranajes de madera tipo “linterna”. Se inició la fabricación de engranajes metálicos principalmente de latón, aplicados a instrumentos de astronomía y relojes mecánicos. Leonardo da Vinci dedicó mucho tiempo a calcular relaciones de engranajes y formas ideales de dientes. Se pensó que ya existían todas las condiciones para un fuerte desarrollo pero no fue así, puesto que hasta mediados del siglo XVII el desarrollo tecnológico fue prácticamente nulo.
El torno de giro continuo, con la introducción de algunas mejoras, se siguió utilizando durante mucho tiempo. Se introdujeron elementos de fundición, tales como la rueda, los soportes del eje principal, contrapunto, apoyo de la herramienta y, hacia 1568, el mandril. Se empezaron a mecanizar pequeñas piezas de acero, pero tardó muchos años en generalizarse. El reverendo Plumier, en su obra “L´Art de tourner” escrita en 1693, señala que se encuentran pocos hombres capaces de tornear hierro.
El francés Blaise Pascal, niño prodigio en matemáticas, enuncia el principio que lleva su nombre en el “Tratado del equilibrio de los líquidos” en 1650. Descubrió el principio de la prensa hidráulica, pero a nadie se le había ocurrido su aplicación para usos industriales hasta que Bramach patenta en Londres su invención de una prensa hidráulica en 1770. Pero parece que fueron los franceses hermanos Perier, entre 1796 a 1812, quienes desarrollaron prensas hidráulicas para el acuñado de moneda. Es a partir de 1840 cuando Cavé inicia la fabricación de prensas hidráulicas de elevadas presiones.
En los siglos XVII y XVIII, los fabricantes de relojes e instrumentos científicos usan tornos y máquinas de roscar de gran precisión, destacando el torno de roscar del inglés Jesé Ramsden construido en 1777. En un soporte de hierro de perfil triangular se colocaba el porta-herramientas, que podía deslizarse longitudinalmente. Con una manivela accionada a mano y a través de un juego de engranajes hacia girar la pieza a roscar colocada entre puntos y, al mismo tiempo, por medio de un husillo de rosca patrón se conseguía el avance o paso de rosca deseado.


SIGLO XVIII: NUEVA FUENTE DE ENERGÍA
El siglo XVIII fue un periodo en el que el hombre dedicó todos sus esfuerzos a lograr la utilización de una nueva fuente de energía. El francés Denis Papin, con el experimentó de su famosa marmita, realizado en 1690, dio a conocer el principio fundamental de la máquina de vapor. Poco después, en 1712, Thomas Newcomen inició la construcción de rudimentarias máquinas de vapor - máquinas de fuego - que fueron utilizadas para achicar el agua en las minas inglesas. Pero definitivamente fue James Watt quien ideó y construyó la máquina de vapor para usos industriales.
Watt concibió su idea de máquina de vapor en 1765, pero no solucionó los problemas para construir una máquina válida para usos industriales hasta quince años más tarde, en 1780. Después de muchos intentos fallidos, y debido a que no era posible obtener tolerancias adecuadas en el mecanizado de cilindros con las barrenadoras-mandrinadoras de la época por haber sido ideadas para el mecanizado de cañones, fue John Wilkinson en 1775 quien construyó, por encargo de Watt, una mandrinadora mas avanzada técnicamente y de mayor precisión, accionada igual que las anteriores por medio de una rueda hidráulica. Con esta máquina, equipada con un ingenioso cabezal giratorio y desplazable, se consiguió un error máximo: “del espesor de una moneda de seis peniques en un diámetro de 72 pulgadas”, tolerancia muy grosera pero suficiente para garantizar el ajuste y hermetismo entre pistón y cilindro.
La máquina de Watt fue el origen de la primera revolución industrial; produciéndose trascendentales cambios tecnológicos, económicos y sociales; pero su construcción no hubiera sido posible sin la evolución técnica, como hemos visto, de la máquina-herramienta. La máquina de vapor proporcionó potencias y regularidad de funcionamiento inimaginables hasta ese momento; pero además no estaba supeditada a la servidumbre de un emplazamiento determinado.
Durante las guerras napoleónicas se puso de manifiesto el problema que creaba la falta de intercambiabilidad de piezas en el armamento. Era un problema al que había que encontrar una solución, fabricando piezas intercambiables. Había que diseñar máquinas-herramienta adecuadas, puesto que no había uniformidad en las medidas ni las máquinas-herramienta existentes podían considerarse como tales.
El inglés Henry Maudslay, uno de los principales fabricantes de máquinas-herramienta, fue el primero que admitió la necesidad de dotar de mayor precisión a todas las máquinas diseñadas para construir otras máquinas. En 1897 construyó un torno para cilindrar que marcó una nueva era en la en la fabricación de máquinas-herramienta. Introdujo tres mejoras que permitieron aumentar notablemente su precisión: la construcción de la estructura totalmente metálica, la inclusión de guías planas de gran precisión para el deslizamiento del carro porta-herramientas y la incorporación de husillos roscados-tuerca de precisión para el accionamiento de los avances. Elementos mecánicos que siguen siendo esenciales en la actualidad.
SIGLO XIX: DESARROLLO INDUSTRIAL
En 1800, Mudslay construyó el primer torno realizado enteramente de metal para roscar tornillos, siendo su elemento fundamental el husillo guía patrón. Se dice que Maudslay dedicó diez años de trabajos para conseguir un husillo patrón satisfactorio.
Para completar el ciclo y tener una referencia de partida, era necesario poder medir con precisión las piezas fabricadas, con el objeto de cumplir las especificaciones para ser intercambiables, Maudslay construyó un micrómetro de tornillo en 1805 para su propia utilización, que bautizó con el nombre de El señor Canciller. James Nasmyth, discípulo aventajado de Maudslay, señaló, refiriéndose a este sistema de medición, que podía medir la milésima parte de la pulgada. Maudslay construyó en 1803 la primera amortajadora vertical para sacar chaveteros a poleas y engranajes y otras máquinas diversas.
Si la máquina de vapor fue el motor que hizo posible el desarrollo del maquinismo, proporcionando la energía necesaria, el desarrollo industrial del siglo XIX fue posible gracias al diseño y fabricación de diversos tipos de máquinas y procesos de trabajo, aplicados a la fabricación de piezas metálicas de todo tipo. La fabricación de las máquinas de vapor, barcos, material de ferrocarril, automóviles, trenes de laminación para la siderurgia, maquinaria textil etc., solamente se puede realizar utilizando máquinas-herramienta. Con la particularidad de que la máquina-herramienta. es el único medio existente con el que se pueden fabricar otras máquinas-herramienta y, en general, también el único medio para fabricar cualquier otra máquina o elemento construido con materiales metálicos.
La influencia de Maudslay en la construcción de máquinas-herramienta británicas perduró durante gran parte del siglo XIX a través de sus discípulos. Los tres más importantes fabricantes de la siguiente generación: Richard Roberts y Joseph Whitworth habían trabajado a sus órdenes y James Nasmyth fue su ayudante personal. Durante todo el siglo XIX se construyeron una gran variedad de tipos de máquinas-herramienta para dar respuesta, en cantidad y calidad, al mecanizado de todas las piezas metálicas de los nuevos productos que se iban desarrollando.
Se hace necesario planear planchas de hierro para sustituir el cincelado, por lo que nace el primer cepillo puente práctico de uso industrial fabricado por Richad Roberts en Inglaterra en 1817, que incorpora una guía en V y la otra plana para el desplazamiento de la mesa porta piezas. En 1836 Whitworth fabricó un pequeño cepillo puente para mecanizar piezas de 1.280 mm., de longitud por 380 de ancho. La necesidad de sustituir el trabajo de cincel y lima, en piezas pequeñas fue la razón que motivó a James Nasmyth en 1836 a diseñar y construir la primera limadora, bautizada con el nombre de “brazo de acero de Nasmyith”. En 1840 Whitworth perfeccionó esta máquina, incorporando un dispositivo automático descendente del carro porta-herramientas.
Hacia 1817 se produce un avance importante en la acuñación de monedas, al desarrollar el mecánico alemán Dietrich Uhlhöm una prensa acodada conocida como prensa monedera, que es perfeccionada por la empresa Ludwig Lówe. El francés Thonelier fabrica una prensa similar e introduce el procedimiento de virola partida. A partir de 1863, La Maquinista Terrestre y Marítima de Barcelona inicia la fabricación de prensas tipo Thonelier para la Casa de la Moneda de Madrid. En la Exposición de París de 1867, el francés Cheret presentó la novedad de una prensa mecánica de fricción. Las primeras máquinas de este tipo se pusieron en funcionamiento en la Fabrica de la Moneda de París. Poco después en 1870, la empresa americana Blis & Williams fabricó y comercializó las primeras prensas de excéntrica.
Las primeras operaciones de fresado antes de la construcción de máquinas especificas para este trabajo se realizaron en tornos accionados a pedal, pero el nacimiento y su evolución esta relacionado, con la guerra de la independencia, cuando la colonia británica en América tuvo que acometer su propio desarrollo industrial. La necesidad de fabricar armamento en grandes series fue el factor determinante en el desarrollo del fresado. El americano Ely Whitney recibió el encargo de fabricar gran cantidad de fusiles para el gobierno de su país. Estudió la posibilidad de fabricación en serie, para lo que diseño y construyó en 1818 la primera máquina de fresar. Estaba compuesta de un armazón de madera soportado por cuatro patas de hierro forjado. La mesa porta-piezas se desplazaba longitudinalmente sobre guías en forma de cola de milano y, entre otros mecanismos, destacaba un eje sinfín que se podía embragar y desembragar sobre una corona dentada alojada en el husillo del carro. En 1830 se construye una fresadora totalmente metálica a la que se incorpora un carro para la regulación vertical.
SIGLO XX: HASTA 1940
El nuevo siglo se recibió como el inicio de una nueva era, que ofrecía grandes posibilidades de progreso. En los Estados Unidos circulaban alrededor de 8.000 automóviles, pero no existía una industria organizada ni los miles de productos que se han desarrollado durante el siglo XX, pero había ilusión y una fuerte confianza en el futuro.
El sistema de generación polifásico de Tesla en 1887 hizo posible la disponibilidad de la electricidad para usos industriales, consolidándose como una nueva fuente de energía capaz de garantizar el formidable desarrollo industrial del siglo XX. Aparece justo en el momento preciso, cuando las fuentes de energía del siglo XIX se manifiestan insuficientes. Los motores de corriente continua fabricados a pequeña escala, y los de corriente alterna, reciben un gran impulso a principios de siglo, reemplazando a las máquinas de vapor y a las turbinas que accionaban hasta ese momento las transmisiones de los talleres industriales. Poco después, muy lenta pero progresivamente, se acoplan directamente de forma individualizada a la máquina-herramienta.
A principios de siglo no se exigían tolerancias de fabricación superiores a 0,001 de pulgada debido, por un lado, a que todavía no hacia falta mayor precisión para los productos que se fabricaban y, por otro, a que las máquinas-herramienta no habían alcanzado un mayor grado de precisión. Pero ante las nuevas exigencias de calidad empezaron a utilizarse tolerancias en milésimas de metro a partir de 1910. Estados Unidos era el fabricante mundial de micrómetros a principios de siglo, y la medición de la precisión máxima en un taller dependía de este instrumento.
La exigencia de calidad y la fuerte evolución productiva del automóvil contribuyeron al desarrollo de la máquina-herramienta, la metrología y la aplicación de los procedimientos de fabricación en masa. La fabricación de piezas intercambiables aumenta constantemente, y se hace necesario mejorar las prestaciones de matricería y utillaje. Para dar respuesta al problema, el ingeniero suizo Prrenond Jacot diseña y fabrica una punteadora vertical con mesa de coordenadas polares, en la que se ejecutan operaciones con una precisión jamás lograda hasta entonces.
En 1908 Henry Ford fabrica el primer automóvil producido en serie, modelo T, y en 1911 instala el primer transportador en cadena en Highland Park, iniciando la producción en masa. Se perfeccionan una gran cantidad de máquinas-herramienta adaptadas a las características exigidas por la industria del automóvil.
Desde principios del siglo XX hasta el nacimiento del control numérico (CN) e incluso después, se mantienen prácticamente en todas las máquinas las formas arquitectónicas que, en este sentido, alcanzaron su plenitud a finales del siglo XIX. Sin embargo evolucionaron y se construyeron otras más potentes, rígidas, automáticas y precisas, pudiendo alcanzar mayores velocidades de giro, con la incorporación a los cabezales de cojinetes o rodamientos de bolas; contribuyendo rentablemente al extraordinario incremento de productividad logrado por la industria en general y en especial por la automovilística y aeronáutica.
Esta evolución fue debida fundamentalmente, por un lado, al descubrimiento de nuevas herramientas de corte como hemos visto: carburo de silicio, acero rápido y, a partir de 1926, se produce otro avance importante con el descubrimiento por parte de la empresa alemana Krupp del carburo cementado metal duro, presentado en la feria de Leipzig en 1927 con la denominación de Widia. Por otro lado se registra la automatización de diversos movimientos mediante la aplicación de motores eléctricos, sistemas hidráulicos, neumáticos y eléctricos.
La aplicación de accionamientos hidráulicos, primero en rectificadoras y después en tornos copiadores, entre otros., se hizo posible, por una parte, debido al perfeccionamiento en la construcción de cilindros precisos y herméticos,y, por otra, al desarrollo de bombas capaces de bombear aceite a presión para el accionamiento de los citados cilindros. Esto fue posible gracias a la capacidad de dos grandes ingenieros: el americano Janney, que diseñó y fabricó en 1906 una bomba de pistones de caudal variable, y el inglés Hele Shaw que construyó, en 1912, una bomba giratoria a pistones radiales y caudal variable.
A partir de 1925 en Estados Unidos las revistas especializadas tratan de las unidades autónomas de mecanizado y nace la noción de transferencia de las piezas a mecanizar. Teniendo en cuenta que, salvo algunas excepciones, todas las operaciones de mecanizado que combinan la rotación de una herramienta con un movimiento de avance se pueden realizar con estas unidades; se ha descubierto la máquina ideal para que, dispuesta en línea, pueda realizar distintas operaciones mediante transferencia de la pieza a mecanizar. A partir del año 1945 las fábricas de automóviles utilizan de manera generalizada máquinas transfer, compuestas de unidades autónomas, en el mecanizado de bloques y culatas.

SIGLO XX: A PARTIR DE 1941
En 1943 se estaba desarrollando un nuevo procedimiento de trabajo revolucionario. El matrimonio de científicos rusos Lazarenko, anuncia su descubrimiento y pone en marcha los primeros dispositivos que permitieron posteriormente el mecanizado por electroerosión. Hacia 1950 aparecieron las primeras máquinas, en las que básicamente se utilizaban elementos de otras convencionales a las que se incorporaba un generador, un tanque para el dieléctrico, electrodo con la forma del molde a mecanizar,entre otros. En 1955 aparecen en Estados Unidos las primeras máquinas de electroerosión concebidas como tales para realizar mecanizados por penetración; revolucionando el difícil y costoso sistema de fabricación de moldes y estampas. Muchos años más tarde, apoyándose en el control numérico, se desarrolla la electroerosión por hilo, que permite el corte de perfiles complicados y precisos mediante un electrodo constituido por un alambre muy delgado y una trayectoria de pieza controlada por control numérico.
La electrónica - y la informática que está soportada por la primera - han provocado una nueva revolución industrial. El punto de partida hay que situarlo en 1945, cuando dos científicos de la Universidad de Pennsilvanya, John W. Manclhy y J. Presper Ecker crearon la primera computadora electrónica digital que ha funcionado realmente en el mundo. Se denominó ENAC, era voluminosa, consumía mucha energía y era difícil de programar, pero funcionaba.
En 1948, John Parson inicia la aplicación del control numérico a la máquina-herramienta, con el objeto de resolver el problema del fresado de superficies complejas tridimensionales para la aeronáutica. En 1949 Parson contrató con el Instituto Tecnológico de Massachussets el diseño de los servomecanismos de control para una fresadora. En 1952 funcionaba un control experimental, aplicado a una fresadora Cincinnati. La programación utilizaba un código binario sobre cinta perforada, y la máquina ejecutaba movimientos simultáneos coordinados sobre tres ejes. En 1955 se presentan unas pocas máquinas en la Feria de Chicago, gobernadas por tarjetas y cintas perforadas La U.S. Air Force se interesa por el sistema y formula un pedido de 170 máquinas-herramienta por valor de cincuenta millones de dólares, beneficiándose del mismo varios prestigiosos fabricantes americanos. Pero los modelos desarrollados durante los años cincuenta y sesenta fueron poco eficaces y resultaron muy caros.
Fue a partir de los años setenta, con el desarrollo de la microelectrónica, cuando el CN pasa a ser control numérico por computadora (CNC) por la integración de una computadora en el sistema. Pero definitivamente fue durante los años ochenta cuando se produce la aplicación generalizada del CNC, debido al desarrollo de la electrónica y la informática, provocando una revolución dentro de la cual todavía estamos inmersos.
Además de su incorporación a las fresadoras, la aplicación del control numérico se extendió a mandrinadoras, tornos y taladros. Pero rápidamente se comprobó que existía un potencial de automatización superior al que podía obtenerse sobre máquinas clásicas y surgió un nuevo concepto de máquina: el llamado centro de mecanizado. Nace así una máquina-herramienta capaz de fresar, taladrar, roscar, mandrinar, entre otros., que incluye un almacén de herramientas y un sistema de cambio automático de las mismas, de forma que el control numérico ordena las posiciones y trayectorias de las piezas y herramientas, velocidades de avance, giro de herramientas y selección de las mismas.
El avance tecnológico del CN ha constituido el aspecto dominante, afectando a todas las máquinas-herramienta, incluso a las universales. En cierto aspecto, las máquinas se han convertido en más simples, porque ciertas funciones han sido transferidas del sistema mecánico al electrónico. Se ha logrado el control simultaneo de varios ejes, como es el caso de los centros de mecanizado, de los tornos, entre otros., lo cual no era posible hasta la aplicación del CNC.
De la denominación de máquina-herramienta se ha pasado al término de máquina-herramienta avanzada, que se refiere a la máquina con mando numérico, concibiéndose buen número de ellas según criterios modulares que permiten la intercambiabilidad y la complementariedad, pudiéndose integrar en células o sistemas de fabricación flexible posibilitando una automatización a la vez integrada y flexible
Desde hace varios años hay que destacar la creciente demanda para equipar las máquinas avanzadas con sistemas de carga y descarga automática con manipuladores, robots articulados, pórticos, entre otros., convirtiendo la máquina individual en una pequeña célula flexible. Esto se debe a la exigencia de la industria transformadora, principalmente de la automoción, que ha puesto en práctica procesos de fabricación discontinua, noción que cubre la fabricación en series pequeñas y grandes.
Nos hallamos ante una revolución que está pasando de una economía sustentada en los principios de la mecánica, esto es, en la producción en masa, en el carácter uniforme de los productos, etc. a una economía que se caracteriza por la flexibilidad, la rápida reacción a la evolución de los mercados, la adaptabilidad de los productos, entre otros. Para ello ha sido necesario integrar tecnologías basadas en la mecánica y la electrónica - mecatrónica - lo que ha supuesto entrar en una nueva cultura industrial condicionada por un enfoque global y pluridisciplinario de los problemas de producción.



BIBLIOGRAFIA